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The inverse energy cascade of two-dimensional turbulence is often represented
phenomenologically by a Newtonian stress–strain relation with a ‘negative eddy
viscosity’. Here we develop a fundamental approach to a turbulent constitutive law for
the two-dimensional inverse cascade, based upon a convergent multi-scale gradient
(MSG) expansion. To first order in gradients, we find that the turbulent stress
generated by small-scale eddies is proportional not to strain but instead to ‘skew-
strain,’ i.e. the strain tensor rotated by 45◦. The skew-strain from a given scale of
motion makes no contribution to energy flux across eddies at that scale, so that the
inverse cascade cannot be strongly scale-local. We show that this conclusion extends a
result of Kraichnan for spectral transfer and is due to absence of vortex stretching in
two dimensions. This ‘weakly local’ mechanism of inverse cascade requires a relative
rotation between the principal directions of strain at different scales and we argue
for this using both the dynamical equations of motion and also a heuristic model of
‘thinning’ of small-scale vortices by an imposed large-scale strain. Carrying out our
expansion to second order in gradients, we find two additional terms in the stress that
can contribute to the energy cascade. The first is a Newtonian stress with an ‘eddy-
viscosity’ due to differential strain rotation, and the second is a tensile stress exerted
along vorticity contour lines. The latter was anticipated by Kraichnan for a very
special model situation of small-scale vortex wave-packets in a uniform strain field.
We prove a proportionality in two dimensions between the mean rates of differential
strain rotation and of vorticity-gradient stretching, analogous to a similar relation
of Betchov for three dimensions. According to this result, the second-order stresses
will also contribute to inverse cascade when, as is plausible, vorticity contour lines
lengthen, on average, by turbulent advection.

1. Introduction
Almost forty years ago, Kraichnan (1967) predicted an inverse cascade of energy

in two-dimensional incompressible fluid turbulence. This is perhaps one of the most
intriguing turbulent phenomena to occur in classical fluids. Kraichnan proposed an
inertial range with a k−5/3 power-law energy spectrum, just as in three dimensions,
but with a flux of energy from small scales to large scales rather than the reverse.
Kraichnan’s detailed predictions for steady-state forced two-dimensional turbulence
have been confirmed with increasing precision in a series of numerical simulations
(Lilly 1971, 1972; Fyfe, Montgomery & Joyce 1977; Siggia & Aref 1981; Hossain,
Matthaeus & Montgomery 1983; Frisch & Sulem 1984; Herring & McWilliams
1985; Maltrud & Vallis 1991; Boffetta, Celani & Vergassola 2000) and laboratory
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experiments (Sommeria 1986; Paret & Tabeling 1998; Rutgers 1998; Rivera 2000). In
fact, it can be rigorously proved that an inverse cascade with constant (negative) flux of
energy must occur in a forced two-dimensional fluid, if damping at low wavenumbers
keeps the energy finite in the high-Reynolds-number limit (Eyink 1996a). Kraichnan’s
seminal concept of an ‘inverse cascade’ has since been fruitfully extended to
other physical situations, such as an inverse cascade of magnetic helicity in three-
dimensional magnetohydrodynamic turbulence (Frisch et al. 1975), of wave action in
weak turbulence (Zakharov & Zaslavskii 1982; see also Zakharov 1967) and of passive
scalars in compressible fluid turbulence (Chertkov, Kolokolov & Vergassola 1998).

Attempts have often been made to account for the two-dimensional inverse energy
cascade phenomenon by a negative eddy viscosity, either within analytical closure
theories (Kraichnan 1971a, b, 1976) or more phenomenologically (Starr 1968). Such
a description postulates a constitutive law for the turbulent stress proportional to the
strain, τij = −2νT Sij , with a viscosity coefficient νT < 0. However, an exact elimination
of turbulent small scales gives rise to a stress formula which is quite different: non-
local in space, history-dependent and stochastic (Lindenberg, West & Kottalam 1987;
Eyink 1996b). Thus, any local and deterministic parameterization of the stress, such as
by an eddy viscosity, can be only an approximate representation at best. Nevertheless,
such simplified constitutive relations can be useful for illuminating some of the basic
physics of turbulent cascades and they are also important, of course, for use in
practical numerical modelling schemes.

In Eyink (2006, hereinafter referred to as I), we developed a general approximation
scheme for the turbulent stress, based upon a multi-scale gradient (MSG) expansion.
We employed there the filtering approach to space-scale resolution in turbulence
(Germano 1992), which is also used in large-eddy simulation (LES) modelling schemes
(Meneveau & Katz 2000). Within that framework, we developed an expansion of the
stress, first in contributions from different scales of motion and then in terms of space
gradients of the filtered velocity field. As a concrete application of the general scheme
we considered in (I) the forward cascade of energy and helicity in three dimensions.
In this paper, we apply the same formalism to the two-dimensional inverse energy
cascade. In certain respects, the two-dimensional theory is more difficult than the
three-dimensional theory, because of certain peculiarities of the inverse cascade. We
find that contributions to the stress from velocity increments at subfilter scales are
much more important in two dimensions than in three dimensions. Also, terms
second-order in space gradients play a significant role in the two-dimensional inverse
cascade, whereas in three dimensions the terms first-order in gradients appear to
suffice. Recognizing these facts has proved crucial to unravelling the physics of the
two-dimensional inverse energy cascade.

However, two dimensions is simpler than three dimensions in respect of geometry.
As we discussed in (I), the local energy flux is given, in general, by a scalar product

Π = −S : τ
◦
, (1.1)

where S is the filtered strain tensor and τ
◦

is the deviatoric (i.e. traceless part of the)
stress tensor τ . The quantity Π defined in (1.1) represents the rate of work done by the
large-scale strain against the stress induced by the small scales. In three dimensions,
this expression involves three eigenvalues for each tensor, and also three Euler angles
which specify the relative orientations of the tensor eigenframes. However, in two
dimensions, we have simply

Π = −σ (δτ ) cos(2θ), (1.2)
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where ± σ are the two eigenvalues of S, ±δτ/2 are the two eigenvalues of τ
◦
, and θ is

the angle between the eigenframes of these tensors. We have taken 0 � θ � π/2 and
σ , δτ � 0. Thus, the essence of the inverse energy cascade lies exactly in the tendency
that 0 � θ < π/4. If e(τ )

± are the two eigenvectors of the deviatoric stress corresponding
to the eigenvalues ±δτ/2, then there is a net tensile or expansive stress δτ/2 along the
e(τ )

+ direction and a net contractile or compressive stress −δτ/2 along the e(τ )
− direction.

Therefore, when 0 � θ < π/4 holds, the stretching direction e(σ )
+ of the strain is aligned

primarily along the direction of net tensile stress, whereas the squeezing direction e(σ )
−

of the strain is aligned mainly along the direction of contractile stress. In that case,
the stress cooperates with the strain rather than resists it, and negative work is done
by the large scales against the small scales.

Our primary objective in this work is to gain some understanding of how this
characteristic alignment comes about in two dimensions. In a negative-viscosity model,
the stress is directly proportional to the strain or, equivalently, the alignment angle
θ =0. This configuration leads to a maximal inverse cascade, but it is unlikely to
occur uniformly throughout the flow. In fact, a main result of our work is that, to
first-order in gradients and considering only the contribution to stress from scales of
motion near the filter scale, the alignment is instead θ = π/4 everywhere (§ 2.1.1). We
call such a stress law ‘skew-Newtonian’ and, from (1.2), it gives zero energy flux. Thus,
to first-order in gradients, no energy flux can arise in two dimensions from strongly
scale-local interactions, in agreement with a conclusion of Kraichnan (1971b). On
the other hand, skew-Newtonian stress from smaller subscale modes can give rise
to non-vanishing flux, since the stress is oriented at angle π/4 with respect to the
strain at the same scale, not the large-scale strain S (§ 2.1.2). We argue that the flux
from skew-Newtonian stress produced by more distant subfilter scales is negative,
on average, because of a relative rotation of the principal directions of strain at
distinct scales. A plausible explanation for this characteristic rotation is advanced
based on the exact equation for the rotation angle (Appendix A) and a heuristic
model of ‘vortex-thinning’ (§ 2.1.3). Furthermore, two additional main mechanisms of
inverse cascade are predicted by carrying our expansion to second-order in gradients:
a Newtonian stress with eddy viscosity owing to differential strain rotation; and
a tensile stress directed along vorticity contour lines (§ 2.2.1). The latter effect was
anticipated by Kraichnan (1976) (Appendix B) and it produces an inverse cascade
when vorticity gradients are stretched by the large-scale strain. We derive an identity
(Appendix C) that shows that, under the same condition, the eddy viscosity due to
differential strain rotation is negative on average and produces inverse cascade. These
mechanisms operate for stress produced by subfilter scales also, but more weakly the
more distant in scale (§ 2.2.2).

2. The multi-scale model in two dimensions
In this section, we shall develop for two dimensions the MSG expansion of the

turbulent stress that was elaborated in general in (I). To keep our discussion as brief
as possible, we shall refer to (I) for most of the technical details and only outline here
the main points of the general scheme. We employ the standard ‘filtering approach’
(Germano 1992), which is reviewed, for example, by Meneveau & Katz (2000). Thus,
we filter the velocity field u with a kernel G at a selected length scale � in order to
define a ‘large-scale’ field u from scales > � and a complementary ‘small-scale’ field
u′ = u − u from scales < �. However, we further decompose the velocity field using
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test kernels Γn(r) = �−d
n Γ (r/�n) into contributions u(n) from length scales > �n = λ−n�.

The difference u[n] ≡ u(n) −u(n−1) then represents the velocity contribution from length
scales between �n−1 and �n and yields a multi-scale decomposition,

u =

∞∑
n=0

u[n], (2.1)

of the velocity field. In this paper, we assume a scale ratio λ = 2. We also assume,
for simplicity, that the kernels G and Γ are equal. Thus, the two filtered fields u and
ũ = u(0) at length � are equal and we need no longer keep the second as a distinct
object.

Since the filtered velocity fields u(n) are smooth, they may be Taylor-expanded
into a series of terms from mth-order gradients ∇mu(n). Appropriate functionals
of the velocity field may be expressed in this manner as a summation over both
the gradient index m and the scale index n, which we call a multi-scale gradient
(MSG) expansion. Among the most important quantities for which such an MSG
representation may be developed is the turbulent stress tensor τ . The latter quantity
is defined mathematically as τ = uu − u u. Physically, it gives the contribution of
the small scales to spatial transport of large-scale momentum and it is the quantity
which requires ‘closure’ in the equation for the large-scale velocity u. It was proved
in (I) that there is a convergent MSG expansion for the stress tensor, under realistic
conditions for turbulent cascades.

We should remark that two related, but distinct, approximations for the subscale
stress were developed in (I). The first (I, § 3) was a systematic expansion, which we
shall refer to simply as the MSG expansion. This is a doubly-infinite series in orders
of space gradients and in scales of the velocity field, which converges to the exact
subscale stress. However, as discussed in (I), the rate of convergence of the expansion
in order m of space gradients is apt to be slow as the scale index n is increased.
To obtain a more rapidly convergent gradient expansion in the small scales, we
developed also a more approximate method (I, § 4). In this modified approach, the
small-scale stress was estimated from velocity increments for separation vectors in a
certain subset for which the gradient expansion is rapidly convergent, at all scales. The
hypothesis underlying this approximation is that the stress due to velocity increments
for separation vectors from all subregions is similar and can be estimated, to a good
approximation, by the stress arising from the distinguished subset. We referred to
this modified expansion in (I) as the coherent-subregions approximation (CSA), or the
CSA-MSG expansion. It is guaranteed to converge rapidly, but its accuracy depends
upon the quality of the basic hypothesis. The latter seems plausible, but should be
subjected to empirical tests.

As we shall see below, it is more important to consider the contributions of sub-
filter scales in the two-dimensional inverse energy cascade than it is in the three-
dimensional forward cascade. Therefore, the rapid convergence of the CSA-MSG
expansion at small scales makes it more practical than the systematic expansion for
two dimensions, and only the former will be considered here. However, given the close
formal relation between them, most of our qualitative physical discussion below can
be carried over, with some minor changes, to the systematic MSG expansion, and it
is only for the purpose of quantitative comparisons that the CSA expansion is to be
preferred. To describe this approximation scheme, it is necessary to decompose the
turbulent stress as τ = � − u′u′, where we refer to � as the ‘systematic’ contribution
to the stress and to −u′u′ as the ‘fluctuation’ contribution. For further discussion of
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these two terms and for mathematical formulae, see (I, § 2.13–2.14). In terms of these
two quantities, the general CSA-MSG expression for the stress in any dimension d

was given in (I), to nth-order in scale index and mth-order in gradients, as:

τ (n,m)
∗ =

n∑
k=0

�[k],(m)
∗ −

n∑
k,k′=0

u′ [k],(m)
∗ u′ [k′],(m)

∗ . (2.2)

Using the results for m = 2 as illustration, as in (I), we have

�[k],(2)
∗ =

C
[k]

2

d
�2

k

∂u[k]

∂xl

∂u[k]

∂xl

+
C

[k]

4

2d(d + 2)
�4

k

∂2u[k]

∂xl∂xm

∂2u[k]

∂xl∂xm

+
C

[k]

4

4d(d + 2)
�4

k
u[k]
u[k], (2.3)

u′ [k],(2)
∗ =

−1

2d
√

Nk

C
[k]

2 �4
k
u[k]. (2.4)

The coefficients C
[k]

p in this model for p = 2, 4, . . . represent the partial pth moments
of the filter-kernel G over a spherical shell of separation vectors of length ≈ �k,

corrected by a multiplicative factor of Nk = 2kd to compensate for the decreasing
volume of those shells with increasing k. Explicit expressions were given for these
coefficients with a Gaussian filter, in (I), Appendix C. (The expressions involve
incomplete gamma functions. For the case d = 2 relevant here, these become, for
p = 2m, γ ((d + p)/2, x) = γ (1 + m, x) = m![1 − (1 + x + x2/2! + · · · + xm/m!)e−x], in
terms of elementary functions. See Abramowitz & Stegun (1964, formulae 6.5.2 and
6.5.13).) Notice that, with the volume-corrected coefficients used here, the ‘fluctuation’
terms in (2.2) are decreased relative to the ‘coherent’ terms by the factors 1/

√
NkNk′ .

These were proposed in (I) as a consequence of a central limit theorem argument for
the averages over volume that define the ‘fluctuation’ velocities in (2.4). Because of
this, those terms are expected for larger k to be negligible relative to the ‘systematic’
contributions in (2.2).

This brief synopsis provides enough background on the MSG expansion for our
application in this paper to the two-dimensional inverse cascade. For mathematical
derivations and more extensive physical discussion, see (I).

2.1. The first-order model

To begin our discussion of the two-dimensional energy cascade, we shall consider
the CSA-MSG expansion of the stress developed to first order in velocity gradients.
According to the general formula in equations (2.2)–(2.4), the expansion of the stress
then contains only the ‘coherent’ part �, since the ‘fluctuation’ velocity u′ vanishes to
first order. Thus, in any space dimension d, the expansion is given to this order by

τ (n,1)
∗ =

n∑
k=0

�[k],1
∗ , (2.5)

with

�[k],(1)
∗ =

C
[k]

2

d
�2

k

∂u[k]

∂xl

∂u[k]

∂xl

, (2.6)

consisting of just the first term in (2.3). See also I, § 5.2. Terms for large values of k

become negligibly small (UV scale-locality), so that the limit as n → ∞ exists. For
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a monofractal velocity field with Hölder exponent everywhere 1/3 – as expected in
the two-dimensional inverse cascade (Paret & Tabeling 1998; Yakhot 1999; Boffetta
et al. 2000) – the kth term in (2.6) scales as ∼ �

2/3
k (Eyink 2005; I).

We now specialize the model to two dimensions, using the standard formula for a
velocity-gradient (deformation) matrix in two-dimensions,

∂ui

∂xj

= Sij − 1
2
εijω, (2.7)

which relates it to the symmetric traceless strain matrix S and (pseudo)scalar vorticity
ω. Here, εij is the antisymmetric Levi–Civita tensor in two dimensions. Substituting
(2.7) into (2.6) yields

�
[k],1
∗;ij = 1

2
C

[k]

2 �2
k

{
S

[k]
il S

[k]
j l + ω[k]S̃

[k]
ij + 1

4
δij

∣∣ω[k]
∣∣2}, (2.8)

where we have defined the skew-strain matrix as S̃ij = Sikεkj . (This differs slightly
from the general definition given in (I), which would lead us in two dimensions to

term the product ω[k]S̃
[k]

as ‘skew-strain’ instead. This slight difference in terminology
should cause no difficulty.) In terms of matrix arrays

S =

(
S11 S12

S12 −S11

)
, S̃ =

(−S12 S11

S11 S12

)
. (2.9)

Thus, the skew-strain is also symmetric and traceless. It is easy to see that the strain

and skew-strain are orthogonal in the standard matrix inner product S : S̃ = 0 (and
hence the prefix ‘skew’). The various terms that appear in (2.8) are the same as those
in equation (5.4) of I for three dimensions and have the same physical interpretations.
Note, however, a principal difference with three dimensions is the absence of terms
proportional to ω

[k]
i ω

[k]
j . Since the only component of vorticity is perpendicular to the

plane of motion, no stress can be directed along vortex lines in two dimensions.

2.1.1. The strong UV-local terms

It is interesting to consider separately the first term in (2.5), for k = 0, since it corres-
ponds to the stress contribution from filter-scale velocity increments. Thus, we refer
to this as the strongly UV-local contribution. It is the only summand in (2.5) which
is closed in terms of the filtered velocity u = u(0). In fact, this term corresponds to
the well-known nonlinear model for the turbulent stress (Meneveau & Katz 2000), as
discussed at length in (I).

The most important observation about the strongly UV-local term in two dimen-
sions is that it gives zero energy flux, pointwise in space. This is obvious for the
term proportional to |ω|2, since it is a pressure contribution. Furthermore, the first

term is proportional to S
2

= σ 2I in two dimensions, where I is the identity matrix,
and is thus also a pressure contribution. Here, we have used the Cayley–Hamilton
theorem and the fact that the strain matrix in two dimensions has two eigenvalues
±σ of equal magnitude, but opposite sign. Therefore, the first term contributes also
zero flux. The term in (2.8) proportional to the skew-strain is deviatoric, but it does
not contribute to energy flux, by the orthogonality mentioned earlier. We can thus
conclude that there is no energy flux anywhere in space arising from the strongly
UV-local interactions, to first order in velocity gradients.

This conclusion agrees with Kraichnan (1971b), who showed that an energy
cascade in two dimensions cannot be strongly scale-local. It is worth summarizing his
demonstration, which is based on the detailed conservation of energy and enstrophy in
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Fourier space. Let T (k, p, q) represent the energy transfer into wavenumber magnitude
k from all triads of wavenumbers with magnitudes k, p, q. A measure of the scale-
locality of the triad is provided by the parameter

ν = log2(kmed/kmin) � 0,

where kmin, kmed and kmax are the minimum, median and maximum wavenumber
magnitudes, respectively, from the triad k, p, q . Intuitively, this quantity represents
the ‘number of cascade steps’ between the minimum and median wavenumber. Note
that kmax � 2kmed by wavenumber addition, so that log2(kmax/kmin) � ν + 1. Thus, the
parameter ν unambiguously measures the ratio of scales involved in the triadic
interaction. In these terms, non-local (note that this definition makes no distinction
between ultraviolet (UV) and infrared (IR) non-local interactions, as in Eyink 2005)
interactions correspond to those triads with ν � 1 and strongly scale-local ones to
those with ν � 1. Kraichnan (1971b) noted that in two dimensions the transfer
function satisfies both

T (k, p, q) + T (p, q, k) + T (q, k, p) = 0, (2.10)

as a consequence of energy conservation, and

k2T (k, p, q) + p2T (p, q, k) + q2T (q, k, p) = 0, (2.11)

by conservation of enstrophy. Multiplying (2.10) by q2 and subtracting from (2.11)
gives

(k2 − q2)T (k, p, q) + (p2 − q2)T (p, q, k) = 0. (2.12)

Thus, if k = p = q, then T (k, p, p) = 0, and substituting back into (2.10) gives also
T (p, p, k) = T (p, k, p) = 0. Hence, there is zero transfer, if any two wavenumbers
have equal magnitudes, and, in particular, if ν = 0. However, it is very plausible to
expect that the transfer function will be continuous in the wavenumber magnitude.
In that case, transfer will be vanishingly small also in the limit that ν � 1. Kraichnan
(1971b) obtained more quantitative results using his analytical test-field-model (TFM)
closure. He found (see his figure 2) that roughly 90 % of the energy flux comes from
triads with ν � 1, 70 % with ν � 2, and 60 % with ν � 3. To obtain 90 % of the
total energy flux in the TFM closure required including all triads with ν � 5. Thus,
the two-dimensional energy cascade was predicted by Kraichnan to be scale-local (cf.
also the exact analysis in Eyink 2005), but only weakly so.

There is a fundamental relationship between our argument and Kraichnan’s. This
is best understood by recalling the form of the energy flux in three dimensions from
the strongly local first-order terms (I, equation (5.11)) (and see also Borue & Orszag
1998):

Π (0,1) = 1
3
C2�

2
{

−Tr (S
3
) + 1

4
ω�Sω

}
. (2.13)

Both of these terms vanish in two dimensions, the second because of absence of vortex
stretching. As discussed in (I), the first term can also be related to vortex stretching,
at least in a space-average sense, by a relation of Betchov (1956). Of course, the lack
of vortex stretching in two dimensions is also what underlies the conservation of
enstrophy, used in Kraichnan’s argument. The argument that we have given confirms
Kraichnan’s conclusion and extends it to be also pointwise in space.

2.1.2. The weakly UV-local terms

From the preceding discussion, we can see that any energy flux that arises to first
order in gradients must be due to subfilter modes, with k > 0. Since the contribution
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from modes with k � 1 is also small, the flux comes primarily from the weakly
local terms with k � 1. This contribution for each k � 1 can arise solely from the
skew-strain term in the stress (2.8), since, by the same reasoning as above, the other
two terms are isotropic stresses or pressures. The flux from modes at scale k is thus

Π [k],(1)
∗ = 1

2
C

[k]

2 �2
kω

[k]
(
S[0]: S̃

[k])
. (2.14)

This can be rewritten in more intuitive fashion using ‘polar coordinates’ for strain
matrices:

S = σ

(
cos(2α) sin(2α)

sin(2α) − cos(2α)

)
, S̃ = σ

(
− sin(2α) cos(2α)

cos(2α) sin(2α)

)
. (2.15)

Here, σ = |S|/
√

2 is the (positive) strain eigenvalue and α = (1/2) arctan(S12/S11) is

the angle made by the frame of strain eigenvectors e(σ )
+ , e(σ )

− with a fixed orthogonal
frame. Note, incidentally, that the skew-strain is obtained by rotating the frame of the
strain by π/4 radians. By choosing appropriately between the two unit eigenvectors
±e(σ )

+ , we can always ensure that 0 � |α| < π/2. Thus, from (2.14) and (2.15),

Π [k],(1)
∗ = C

[k]

2 �2
kσ

[0]σ [k]ω[k] sin
[
2
(
α[k] − α[0]

)]
, (2.16)

a remarkably simple and compact result.
The total flux from all scales k = 0, 1, . . . , n to first order in gradients is thus

Π (n,1)
∗ =

n∑
k=1

C
[k]

2 �2
kσ

[0]σ [k]ω[k] sin
[
2
(
α[k] − α[0]

)]
. (2.17)

In order to achieve an inverse energy cascade, it must hold that the terms in the sum
are negative on average, at least for k � 1. The sign of (2.16) is determined completely
by the factor ω[k] sin[2(α[k] − α[0])], which depends upon the relative angle α[k] − α[0].

If we choose that 0 � |α[k] − α[0]| < π/2, then this factor will be negative if the strain-
frame at scale k lags the strain-frame at scale 0 (α[k] < α[0]) in regions where ω[k] > 0,

and leads (α[k] > α[0]) in regions where ω[k] < 0. Under these conditions, the small-
scale stress will cooperate with the large-scale strain and the latter will do negative
work. Note that this is quite different from a ‘negative-viscosity’ mechanism, with a
Newtonian stress proportional to strain S[k]. Instead, the crucial deviatoric component

of the stress is of the form γ [k]S̃
[k]

, where γ [k] = C
[k]

2 �2
kω

[k]/2 has dimensions of a
diffusion constant and may be termed ‘skew-viscosity’.

We see that a contribution to inverse energy cascade at scale k requires an anti-
correlation in the signs of ω[k] and α[k] − α[0]. A plausible dynamical mechanism for
this can be suggested, based upon the exact equation for the strain orientation angle:(

σ (k)
)2

D
(k)
t α(k) = 1

8
ω(k)Q(k) + ∇ · K (k) + · · · , (2.18)

with D
(k)
t = ∂t + u(k) · ∇ the advective derivative at scale k,

Q(k) = 
p(k) = 1
2

[
ω(k)

]2 − 2
[
σ (k)

]2
(2.19)

the pressure hessian at scale k, and

K (k) = 1
4

(
∇p(k)×∇

)
u(k) (2.20)

a space transport term due to pressure forces. The · · · terms in (2.18) represent contri-
butions from the turbulent stress due to modes at length scales < �k. See Appendix A
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for the derivation. According to (2.18), Dtα
(k) ∼ �

−2/3
k in a two-dimensional inverse

energy cascade range, so that the rotation rate increases with increasing k. Since the
pressure contribution ∇ · K (k) is spatially non-local and averages to zero, it can be
treated as random noise. We shall likewise disregard the effect of subgrid terms · · ·.
Thus, the expected correlation will be created in strain-dominated regions with
Q(k) < 0, since α(k) there rotates against the locality vorticity ω(k) and faster for larger
k. Since the flux (2.16) is proportional also to the strain magnitudes σ (0), σ (k), most
of the cascade should occur in the strain regions where this counter-rotation occurs.

2.1.3. A heuristic model

A simple model problem may help to illuminate the basic mechanism of inverse
energy cascade due to skew-strain. We shall consider the effect of a large-scale uniform
straining field,

S(0) =

(
σ (0) 0
0 −σ (0)

)
, (2.21)

on a collection of small-scale vortices, each initially circular with support radius �n.

The ith vortex in the assembly will be assumed to have initially a vorticity distribution
ω

[n]
i (|r − r i |) radially symmetric about its centre r i . Let us assume also that the small-

scale vortices each have a single sign of vorticity, but with the net circulation of the
array equal to zero:

∑
i

∫
dr ω

[n]
i (r) = 0. Kraichnan (1976) considered a very similar

model problem of ‘vortex blobs’ in order to illustrate the mechanism of asymptotic
negative viscosities in his test-field model closure. In Appendix B, we review
Kraichnan’s ‘blob model’ and compare it with the present one. Suffice it to say
here that it was crucial in Kraichnan’s calculation to take vortex wave-packets with
a very rapid sinusoidal variation in the vorticity. On the contrary, we require no
such variation and a particular case of our model is an array of vortex patches with
constant vorticity levels, each initially circular.

The effect of the straining field on this set of small-scale vortices will be to deform
them into elliptical form, elongated in the x-direction and thinned in the y-direction.
Kida (1981) found this behaviour in his exact solution of two-dimensional Euler
for an elliptical vortex patch in a uniform shear flow, whenever the strain σ and
vorticity level ω satisfy |σ/ω| � (3 −

√
5)/[2(2 + 2

√
5)1/2]

.
= 0.15. More generally, the

same phenomenon appears in a rapid distortion limit for the case of a strong strain
σ (0) � maxi ‖ω

[n]
i ‖∞. We can then ignore the self-evolution of the vortices and also

their mutual interactions. This permits us to focus on a single vortex centred at
r = o with radial vorticity profile ω[n](r). The vorticity level set initially at radius r

is distorted into an ellipse whose equation is x2/a2 + y2/b2 = 1 with semi-major axis
a = r exp(σ (0)t) and semi-minor axis b = r exp(−σ (0)t) at time t .

The immediate result is that the energy of the small-scale vortex patch is reduced, as
a consequence of conservation of circulation. The area inside each elliptical vorticity
contour is preserved, but the length of the perimeter is increased. In order to keep
the circulation constant, the circumferential velocity must decrease. For example, in
the case of a circular vortex patch of constant vorticity-level ω[n] with initial radius
r = �n, the patch evolves into an elliptical shape with circulation ω[n] · πab

.
= 4u[n]a,

where u[n](t) is the x-component of the circumferential velocity at time t . The second
expression for circulation holds in the limit when σ (0)t � 1 and a � b, so that the
perimeter of the elliptical vortex is approximately 4a and is nearly parallel to the
x-axis. In that case,

u[n](t)
.
= (π/4)ω[n]b = (π/4)ω[n]�n exp

(
−σ (0)t

)
. (2.22)
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A similar argument can be made for points interior and exterior to the vortex, with
the result that the velocity is everywhere reduced by a common factor of exp(−σ (0)t).
Thus, the kinetic energy of the vortex is also decreased. (Of course, a single vortex of
definite sign would have infinite energy in the unbounded plane, owing to divergence
at infinity. Such far-field divergence is absent when considering the array of vortices
with zero net circulation.)

The energy lost by the collection of small-scale vortices is transferred to the large
scales. To see this, observe that the large-scale straining, in addition to reducing the
velocity amplitude of the small-scale vortices, also rectifies the velocity direction. The
velocity vector of the elongated vortices points almost entirely in the x-direction
and very little in the y-direction. Indeed, the vorticity level curve initially at radius
r for the profile ω[n](r) now becomes, to leading order, a pair of straight parallel
lines y = ±b = ±r exp(−σ (0)t). Thus, the vorticity field approximates to ω[n](y, t) =
ω[n](|y| exp(σ (0)t)) when σ (0)t � 1. This is merely the vorticity associated to a long
narrow shear layer with weakened velocity,

u[n](y, t) = − exp
(
−σ (0)t

)
sign (y)

∫ |y| exp(σ (0)t)

0

ω[n](r) dr, (2.23)

directed entirely along the x-axis. If the tensor product u[n]u[n] were integrated over
space at the initial time, it would produce only a diagonal stress contribution:

Tij (t = 0) =

∫
vortex

dr u
[n]
i (r)u[n]

j (r) = δij π

∫ �n

0

dr r
∣∣u[n]

θ (r)
∣∣2, (2.24)

where u
[n]
θ (r) = (1/r)

∫ r

0
ρω[n](ρ) dρ is the tangential velocity around the vortex centre.

(Here we have integrated only over the body of the vortex, neglecting the contribution
of more distant regions.) However, after ‘rectification’ there is a net stress component

T11(t)
.
= 2a

∫ b

−b

dy u[n](y, t)u[n](y, t)

= 4�n

∫ �n

0

dr

{∫ r

0

ω[n](ρ) dρ

}2

, (2.25)

with all other components much smaller. This resultant stress reinforces the large-
scale strain field, so that

∫
dr Π (r, t) = −SijTij < 0, and negative work is done by

the large scales against the small scales.
This simple model of inverse energy cascade illustrates the pattern of relative

orientation of strain frames at distinct scales, which was discussed earlier. In fact,
within the long narrow shear layer created by thinning of a vortex there is a velocity-
gradient (or deformation) tensor of the form

D[n](y, t) =

(
0 −ω[n](y, t)

0 0

)
, (2.26)

with (∂u[n]/∂y)(y, t) = −ω[n](y, t). The corresponding strain matrix is

S[n](y, t) =

(
0 −ω[n](y, t)/2

−ω[n](y, t)/2 0

)
, (2.27)

which has eigenvectors

e[n]
+ =

(
1

−1

)
, e[n]

− =

(
1

1

)
(2.28)
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(a)

(b)

Figure 1. Mechanism of vortex-thinning. (a) A large scale strain field with stretching direction
along the x-axis and shrinking direction along the y-axis, and a small-scale vortex of positive
circulation, initially circular. (b) The vortex elongated along the x-axis and thinned along the
y-axis, and its strain basis, rotated by −45◦ with respect to the large-scale strain.

for ω[n](y, t) > 0 and with e[n]
+ , e[n]

− reversed for ω[n](y, t) < 0. See figure 1, which
illustrates the case of a vortex patch of positive (counterclockwise) circulation. The
small-scale strain basis shown there is rotated relative to the large-scale strain basis
by −π/4 radians. If the vortex patch had had negative (clockwise) circulation, then
the rotation would have been by +π/4 radians instead.

This same model also clarifies the origin of stress proportional to skew-strain in
our general scheme. The skew-strain in such an elongated vortex is

S̃
[n]

(y, t) =

(
ω[n](y, t)/2 0

0 −ω[n](y, t)/2

)
. (2.29)

Let us introduce a convenient space-average over the vortex of the form〈
ω[n]

〉
=

2

b2

∫ b

0

dy

∫ y

0

dy ′ω[n](y ′, t) =
2

�2
n

∫ �n

0

dr

∫ r

0

dρω[n](ρ). (2.30)

By the Cauchy–Schwartz inequality,

1

�n

∫ �n

0

dr

{∫ r

0

ω[n](ρ) dρ

}2

�
[
(�n/2)

〈
ω[n]

〉]2
,

and, furthermore, these two quantities will generally have a ratio within some specified
bounds. It follows that, when σ (0)t � 1,

�2
n

〈
ω[n]

〉〈
S̃

[n]〉 .
=

(
τ11/2 0

0 −τ11/2

)
, (2.31)

where we have set τ11 = T11/�
2
n. Thus, a (deviatoric) stress proportional to skew-strain

arises naturally from a narrow shear layer produced by vortex thinning.
It is not completely obvious why small-scale vortices in a two-dimensional inverse

cascade range should be elongated and thinned by large-scale strain. After all, in such
a range, σ (0) ∼ �−2/3 � (�n)

−2/3 ∼ ω[n] for � � �n. Thus, the large-scale strain is weak
compared with the vorticity at smaller scales, exactly the opposite as is assumed in
the rapid distortion limit above. The vorticity at length scale �n could be expected to
respond more strongly to the larger strains σ [n′] � ω[n] from length scales ln′ � �n.



202 G. L. Eyink

However, the large-scale strain, although relatively weak, is coordinated over large
distances and is temporally coherent, with a typical lifetime of t� ∼ �2/3. By contrast,
the strain from the smaller scales is random and uncoordinated and, furthermore,
evolves on a much shorter time scale t�n′ ∼ (�n′)2/3. Thus, the small-scale vorticity can
adjust very rapidly to the persistent large-scale strain, whereas it does not have time
to adjust to the many, even more rapidly fluctuating strains from the still smaller
scales.

Clearly, our simple model calculation does not reflect all of the complexities of the
two-dimensional inverse cascade range. However, it gives a simple physical picture
for the origin of stress proportional to skew-strain, which, we believe, is essentially
the correct one. If the initial profiles of the vorticity, ω

[n]
i (r) for the ith circular vortex,

are not constant in the radial distance r from the centre, then vortex thinning also
produces large vorticity gradients parallel to the compressing direction of the strain
field. This second-order effect will be discussed in detail in the following section.

2.2. The second-order model

We have seen that, unlike in three dimensions, the MSG expansion τ
(n,m)
∗ to lowest

order in space gradients, m = 1, can only explain energy cascade if subfilter scales
n � 1 are considered. However, another possible mechanism may be terms of higher
order in space gradients with m � 2. To investigate this possibility, we develop in this
section the two-dimensional MSG expansion to second-order in velocity gradients. We
can specialize the formulae (2.3) and (2.4) to two dimensions, replacing the velocity
derivative with strain and vorticity using (2.7). The result is:

�
[k],(2)
∗;ij = 1

2
C

[k]

2 �2
k

[
S

[k]
il S

[k]
j l + ω[k]S̃

[k]
ij + 1

4
δij

∣∣ω[k]
∣∣2]+ 1

16
C

[k]

4 �4
k

[
S

[k]
il,mS

[k]
j l,m

+
(
∂lω

[k]
)
S̃

[k]
ij,l +

1
4
δij

∣∣∇ω[k]
∣∣2]+ 1

32
C

[k]

4 �4
k∂̃iω

[k] ∂̃jω
[k], (2.32)

u
′ [k],(2)
∗;i =

1

4
√

Nk

C
[k]

2 �2
k∂̃iω

[k]. (2.33)

In the last term of (2.32) and also in (2.33) we have defined ∂̃i = εij ∂j , the skew-

gradient, which satisfies ∇̃ · ∇ = 0. This is the same operator that appears in the

streamfunction representation of a velocity ui = ∂̃iψ . Indeed, to derive the last term
in (2.32) and the term in (2.33) we used the streamfunction ψ [k] and the Poisson

equation −
ψ [k] = ω[k] in order to write 
u
[k]
i = −∂̃iω

[k].

2.2.1. The strongly UV-local terms

As for the first-order expansion, we begin by considering only the strongly UV-local

terms with n = 0. These give altogether (note that C(0)
p = C

(0)

p for n = 0)

�
(0,2)
∗;ij = 1

2
C

(0)
2 �2

[
SilSjl + ωS̃ij + 1

4
δijω

2
]
+ 1

16
C

(0)
4 �4

[
Sil,mSjl,m + (∂kω)S̃ij,k + 1

4
δij |∇ω|2

]
+ 1

32

[
C

(0)
4 − 2

(
C

(0)
2

)2]
�4(∂̃iω) (∂̃jω). (2.34)

Let us consider the physical meaning of the various terms that appear.
We have already considered the terms in the initial line of (2.34) that arise from

first-order velocity-gradients and have shown that they give no contribution to energy
flux. The second line is remarkably similar in appearance to the first. In fact, it is not
hard to see that the first term proportional to Sil,mSjl,m is an isotropic (pressure) term,

by exactly mimicking the argument we gave earlier for the SilSjl-term, separately for
each value of the index m that is summed over. Of course, the final term proportional
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to δij |∇ω|2 is also a pressure. This leaves only the middle deviatoric term as possibly
contributing to energy flux. This second-order term,

τ
(0),[2]
I =

(
1
16

)
C

(0)
4 �4(∇ω · ∇)S̃, (2.35)

gives rise exactly to an ‘eddy viscosity’. To see this, it is easiest to use the ‘polar
coordinates’, (2.15), for the strain and skew-strain. Together with the chain rule, this
gives

(∇ω · ∇)S̃ = −2(∇ω · ∇α)S + (∇ω · ∇λ)S̃, (2.36)

with λ = ln σ . Of course, the second term proportional to skew-strain does not
contribute to energy flux. Thus, up to such conservative terms, we obtain

τ
(0),[2]
I = −

(
1
8

)
C

(0)
4 �4(∇ω · ∇α)S + · · · = −2νT S, (2.37)

with νT = C
(0)
4 �4(∇ω · ∇α)/16. This is a stress of Newtonian form, with an eddy

viscosity due to differential rotation of the strain. Indeed, the eddy-viscosity coefficient
νT is proportional to the rate of rotation of strain along the direction of maximum
increase of vorticity.

The final term of (2.34) arises from the combination of the last term in (2.32) for
k = 0 and the product of two terms in (2.33) for k = k′ = 0. These together give

a stress exerted along the direction parallel to the skew-gradient ∇̃ω. Equivalently,
this stress is directed normal to the vorticity gradient ∇ω, or along the level sets or
contour lines of the vorticity. There are two opposing contributions, a tensile stress
proportional to C

(0)
4 from (2.32) and a contractile stress proportional to (C(0)

2 )2 from
(2.33). Which dominates could depend upon the choice of the filter kernel G. However,
the concrete calculations in Appendix C of I show that C = [C(0)

4 − 2(C(0)
2 )]2/32 > 0

for a Gaussian kernel. We have also checked this to be true for a few other cases,
e.g. an exponential filter G(r) = e−|r|/(2π). At least for these choices we see that there
is a tensile stress of strength C�4|∇ω|2 exerted by the small scales along vorticity
contour lines. As we discuss in Appendix B of the present paper, this effect was
anticipated in a calculation of Kraichnan (1976) for a simple model problem of a
two-dimensional vorticity wave-packet in a uniform strain field. This tensile stress
along vorticity contours should be contrasted with the contractile stress −C

(0)
2 �2|ω|2/2

exerted along vortex lines in three dimensions, discussed in (I).
The strongly UV-local terms in the stress thus can give a non-vanishing contribution

to energy flux, at second-order in gradients. Indeed,

Π (0),[2]
∗ = −C�4(∇̃ω)�S(∇̃ω) − C ′�4S : (∇ω · ∇)S̃, (2.38)

with C = [C(0)
4 − 2(C(0)

2 )2]/32 and C ′ = C
(0)
4 /16. Using ε�Sε = −S and (2.36), this can

also be written as

Π (0),[2]
∗ = C�4(∇ω)�S(∇ω) + 4C ′�4σ 2(∇ω · ∇α). (2.39)

These are the only UV-local contributions to the energy flux at second order.
It is important to determine the sign of these terms, on average, to see whether they

contribute to inverse cascade or direct cascade. In this respect, note that the first term
in (2.39) is proportional to the negative of the rate of vorticity-gradient stretching by
the large-scale strain. That is, if we consider the equation for the large-scale vorticity
gradient, then it has the form

Dt |∇ω|2 = −2(∇ω)�S(∇ω) + · · · , (2.40)



204 G. L. Eyink

where Dt = ∂t + u · ∇ and · · · denotes neglected terms due to the turbulent stress.
Thus, we see that the first term in (2.39) is negative (inverse cascade) precisely when
vorticity gradients are magnified, a connection already noted by Kraichnan (1976).
Equivalently, inverse cascade requires the stretching direction e(σ )

+ of the strain field to
tend to be parallel to contour lines of the large-scale vorticity. Since we have already
seen that the small scales induce a tensile stress along the contour lines, the stress
and strain cooperate in this alignment and negative work is done by the large scales
against the small scales. Equation (2.40) renders the required alignment plausible,
since components of the vorticity gradient parallel to the squeezing direction will
tend to grow, according to this equation. Note that this tendency might be moderated
somewhat by the small-scale stress terms which we have neglected in (2.40) (cf. Van
der Bos et al. 2002).

The second term in (2.39) will be negative precisely when ∇ω · ∇α < 0. This
means that the strain frame must counter-rotate against vorticity changes, i.e. rotate
clockwise moving in the direction of increasing vorticity. We do not have a direct
dynamical explanation for this tendency, analogous to the one we gave above for
vorticity-gradient stretching. On the other hand, we have found that there is a simple
kinematic relation between the rates of differential strain-rotation and vorticity-
gradient stretching in two dimensions:

〈(∇ω)�S(∇ω)〉 = −〈S : (∇ω · ∇)S̃〉, (2.41)

or, equivalently,

〈(∇ω)�S(∇ω)〉 = 4〈σ 2(∇ω · ∇α)〉. (2.42)

Equation (2.41), or (2.42), is an exact two-dimensional analogue of the three-
dimensional relation of Betchov (1956), and, like it, depends just on homogeneity
and incompressibility of the velocity field. For a proof of the ‘two-dimensional
Betchov relation’ (2.41), see Appendix C. An important immediate consequence is
that differential strain counter-rotation and vorticity-gradient stretching must occur
together, on average, while differential strain co-rotation is associated with mean
shrinking of vorticity gradients. (Because it is purely kinematic, the ‘two-dimensional
Betchov relation’ holds just as well in the enstrophy cascade range. As discussed in
Eyink (2001) and Chen et al. (2003), forward enstrophy flux is also associated with
mean stretching of filtered vorticity gradients. Thus, differential strain counter-rotation
must also occur, on average, in the enstrophy cascade.)

The net energy flux from both terms in (2.39) is always negative (inverse cascade)
when there is mean stretching of vorticity gradients. Because of the Betchov-like
relation (2.42) it follows that 〈Π (0),[2]

∗ 〉 = (C + C ′)�4Γ, where Γ is the common
average in (2.42) and

C + C ′ = 1
32

C
(0)
4 + 1

16

[
C

(0)
4 −

(
C

(0)
2

)2]
� 0. (2.43)

To prove inequality (2.43), note that C
(0)
4 � 0 by its definition. Furthermore,

C
(0)
2 =

∫
|r|�1

dr |r|2G(r) �

√∫
|r|�1

dr G(r) ·
∫

|r|�1

dr |r|4G(r) �
√

C
(0)
4 (2.44)

by the Cauchy–Schwartz inequality and normalization of G. This gives (2.43). Thus, for
any filter, the net flux is negative when Γ < 0. The two-dimensional Betchov relation,
furthermore, gives the ratio of contribution to inverse cascade of the two terms in
(2.39), as C/C ′. For a Gaussian filter, this ratio is C/C ′ = (1/2) − (9/13)e−1/2 .

= 0.08,
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so that approximately 92.6 % of the mean of (2.39) comes from differential strain-
rotation and 7.4 % from vorticity-gradient stretching.

2.2.2. The weakly UV-local terms

The terms of the MSG expansion that are second order in gradients contribute to
energy flux already from the strongly UV-local modes. However, there are additional
contributions at second-order from all the other subscale modes. Here we shall discuss
the physical interpretation and significance of those.

In fact, the various terms that appear in the expressions for the two-dimensional
model stress, (2.32) and (2.33), can be readily understood. The first term in (2.32),
which is first order in gradients, has already been discussed. In the next group of
three second-order terms, the first and last are both pressure contributions and do
not contribute to energy flux. However, the middle term is deviatoric and can give
rise to flux. Using the analogue of (2.36),(

∇ω[k] · ∇
)
S̃

[k]
= −2

(
∇ω[k] · ∇α[k]

)
S[k] +

(
∇ω[k] · ∇λ[k]

)
S̃

[k]
, (2.45)

this term can be split into two. The first is a Newtonian stress −2ν
[k]
T S[k] with an

eddy-viscosity coefficient,

ν
[k]
T = 1

16
C

[k]

4 �4
k

(
∇ω[k] · ∇α[k]

)
, (2.46)

arising from differential strain rotation at a length scale �k. The other term is of the

‘skew-Newtonian’ form γ
[k]
T S̃

[k]
with skew-viscosity coefficient

γ
[k]
T = 1

16
C

[k]

4 �4
k

(
∇ω[k] · ∇λ[k]

)
(2.47)

arising from differential strain-magnification at the same length-scale �k. Note that we
have defined the logarithm of the strain eigenvalue or magnitude as λ[k] = ln σ [k]. Since
the velocity field in the inverse cascade range is monofractal with Hölder exponent
1/3 (Paret & Tabeling 1998; Yakhot 1999; Boffetta et al. 2000), it is not hard to
see that both ν

[k]
T and γ

[k]
T are of order O(�4/3

k ), as expected. (To show this, use the
formulae 2∇α = (S11∇S12 − S12∇S11)/(S

2
11 +S 2

12), ∇λ = (S11∇S11 +S12∇S12)/(S
2
11 + S 2

12),
and the general estimates from Eyink (2005) and (I). The last term in (2.32) represents

a tensile stress of magnitude +C
[k]

4 �4
k|∇ω[k]|2/32 exerted along contour lines of the

vorticity ω[k] at length scale �k .
There remains the ‘fluctuation’ contribution to the stress from (2.33). This can be

best understood by summing over scales, to give u′ (n,2)
∗ = ∇̃ψ

(n)
∗ with a fluctuation

streamfunction

ψ (n)
∗ = 1

4

n∑
k=0

C
[k]

2√
Nk

�2
kω

[k]. (2.48)

Note that the factor 1/
√

Nk reflects the cancellations that are expected to occur in
the space integral for the contributions from modes at length scale �k (I). We see

then, finally, that −∇̃ψ
(n)
∗ ∇̃ψ

(n)
∗ represents a contractile stress along the streamlines of

ψ
(n)
∗ . This term opposes and, to some degree, cancels against the tensile stress terms

in (2.32) exerted along the contour lines of ω[k] for k = 1, . . . , n.
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If the model stress is substituted into (1.1) for the flux, then there results:

Π (n,2)
∗ =

n∑
k=0

{
1
2
C

[k]

2 �2
kω

[k]
(
S(0): S̃

[k])
+ 1

8
C

[k]

4 �4
k

(
∇ω[k] · ∇α[k]

)(
S(0): S[k]

)
− 1

16
C

[k]

4 �4
k

(
∇ω[k] · ∇λ[k]

)(
S(0): S̃

[k])
+ 1

32
C

[k]

4 �4
k

(
∇ω[k]

)�
S(0)

(
∇ω[k]

)}
−

(
∇ψ (n)

∗
)�

S(0)
(
∇ψ (n)

∗
)
. (2.49)

This is our final CSA expansion result for the energy flux in two dimensions. In
addition to the first-order term that appeared in (2.17), there are now second-order
contributions arising from differential strain rotation, differential strain magnification,
and vorticity-gradient stretching. The final term in (2.49) is expected to be much
smaller than the others, because of the cancellations in space averaging discussed
above and additional cancellations in the sum over scales in (2.48). We expect that the
first four terms contribute to inverse cascade. For small k, S[k] should be correlated
to some degree with S(0), so that the differential strain-rotation and vorticity-gradient
stretching terms ought to have negative mean values, for similar reasons as the
corresponding k = 0 terms discussed earlier. Like the first-order ‘skew-Newtonian’
term, the differential strain-magnification term vanishes for k = 0 and can therefore
be expected to be relatively smaller than the differential strain-rotation term. The
latter has its sign determined by the quantity ∇ω[k] · ∇α[k] cos[2(α[k] − α(0))], closely
related to the signed quantity ω[k] sin[2(α[k] − α(0))] that appears in the first-order
term. The final term in (2.49) is the only one that we expect to have a positive mean
(from vorticity-gradient stretching), but we have already argued that that term will
be considerably smaller in magnitude.

Note that the flux term in (2.49) from scale k gives at most a fraction of order
2−2k/3 to the net energy flux. This agrees with rigorous locality estimates (Eyink 2005).
However, the actual contribution is likely to be much smaller, since the correlations
which produce the inverse energy cascade must weaken for k � 1. If the small scales
are isotropic, then the mean stress τ [k] from length scale �k will satisfy:〈

τ
[k]
ij

〉
= 1

2

〈
Tr [τ [k]]

〉
δij for k � 1. (2.50)

In that case, if the large-scale strain S(0) and the stress contribution τ [k] are
asymptotically independent for k � 1, then their mean contribution to the energy flux
vanishes, since the deviatoric part of the stress is zero on average. The existence of
an energy cascade requires a statistical correlation between the large-scale strain and
the small-scale stress contributions from various scales, which becomes progressively
weaker for increasing k.

3. Discussion
The theoretical expression that we have developed here for the turbulent stress

yields many concrete testable predictions – both qualitative and quantitative – for
the two-dimensional inverse energy cascade. Foremost, we predict that strain frames
at small scales should lag/lead those at large scales, when the small-scale vorticity
is positive/negative. A spatial analogue of this effect is that the strain eigenframes
are predicted on average to rotate clockwise in the direction of increasing vorticity
(differential counter-rotation). Likewise, we predict that there will be a positive mean
rate of stretching of vorticity gradients. More quantitatively, our final CSA-MSG
formulae (2.2), (2.32), (2.33) for the stress and (2.49) for the flux may be compared
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in detail with results obtained from experiment or simulation. If the model survives
such tests, then it may be a good point of departure for building a practical LES
modelling scheme of the two-dimensional inverse energy cascade.

In our presentation above we have alluded only briefly to the dynamical mechanisms
that can produce the various correlations and alignments that are postulated, e.g.
based on the evolution equations of strain orientation angles (2.18) and of vorticity
gradients (2.40). Many of the mechanisms expected to operate in two dimensions
have very close analogues in three dimensions. Notice that vortex stretching in three
dimensions is a near relative of the vortex-thinning mechanism in two dimensions,
which we discussed in § 2.1.3. However, the result is opposite, because the stretching
process in three dimensions ‘spins up’ the vortices and increases the kinetic energy
in the small scales. Vorticity contour lines in two dimensions can also be expected
to lengthen on the basis of the same plausible statistical arguments that have been
applied to vortex lines or other material lines in three dimensions (Taylor 1938;
Batchelor 1952; Cocke 1969). This already argues rather strongly for the stretching of
vorticity gradients in two-dimensions incompressible turbulence and, via the Betchov-
like relation (2.42), for differential rotation of strain counter to vorticity. On the other
hand, in three-dimensions, rather more detailed understanding is available through
simple Lagrangian models of the evolution of velocity gradients (Vieillefosse 1982,
1984; Cantwell 1992; Chertkov, Pumir & Shraiman 1999). These phenomenological
models have provided plausible dynamical explanations of the key alignments that
are observed in DNS (Ashurst et al. 1987) and experiment (Tao, Katz & Meneveau
2002). Some of the difficulties in developing such understanding of the inverse energy
cascade can be appreciated by considering the exact equations in two dimensions for
Lagrangian time derivatives of the velocity gradients:

Dtω = 0,

DtSij = 1
2
(
p)δij − ∂2

ijp.

}
(3.1)

Here, we have considered separately the evolution of the vorticity and strain. We
have also neglected the contribution of turbulent stresses to the evolution of filtered
gradients, which may be an important feedback interaction with small scales (Van der
Bos et al. 2002). The equations (3.1) lack the local self-stretching terms which play
the key role in the analogous three-dimensional equations. In fact, the Lagrangian
evolution in (3.1) is entirely trivial except for the pressure hessian in the equation
for the strain and the latter must play an essential role in the production of strain
orientation alignments. More sophistication in the modelling of pressure is therefore
likely to be required than in the three-dimensional case (Vieillefosse 1982, 1984;
Cantwell 1992; Chertkov et al. 1999). Furthermore, we have seen that in the two-
dimensional inverse cascade, both higher-order gradient and multi-scale effects are
important. Thus, it remains a challenge to develop a detailed dynamical understanding
of the two-dimensional inverse energy cascade.

I wish to thank S. Chen, B. Ecke, M. K. Rivera, M.-P. Wang and Z. Xiao for a
very fruitful collaboration on two-dimensional turbulence which helped to stimulate
the development of the present theory. I would also like to thank C. Meneveau and
E. Vishniac for helpful discussions. This work was supported in part by NSF grant
ASE-0428325.
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Appendix A. Dynamical equation for the strain orientation
It is easy to see from the ‘polar’ representation (2.15) of the strain S that 2α =

arctan(S12/S11). Since also σ 2 = S
2

12 + S
2

11, the Lagrangian derivative may be written
as

2σ 2Dtα = S11(DtS12) − S12(DtS11). (A 1)

We can evaluate the time rate of change from the equation (3.1) for the filtered
strain, which neglects the contribution from turbulent stress. Substituting into (A 1)
we obtain

2σ 2Dtα =
∂u

∂x

[
− ∂2p

∂x∂y

]
− 1

2

(
∂u

∂y
+

∂v

∂x

)[
1
2

p − ∂2p

∂x2

]
=

1

2

(
∂u

∂y
+

∂v

∂x

)
∂2p

∂x2
− 1

2

(
∂u

∂x
− ∂v

∂y

)
∂2p

∂x∂y
− 1

4

(
∂u

∂y
+

∂v

∂x

)

p, (A 2)

where we used incompressibility in the last line and also to derive the next identity:

∂u

∂y

∂2p

∂x2
− ∂v

∂x

∂2p

∂y2
−

(
∂u

∂x
− ∂v

∂y

)
∂2p

∂x∂y
=

∂

∂x

(
∂p

∂x

∂u

∂y
− ∂p

∂y

∂u

∂x

)
+

∂

∂y

(
∂p

∂x

∂v

∂y
− ∂p

∂y

∂v

∂x

)
. (A 3)

If (A 3) is used in (A 2) to eliminate the mixed partial derivative of pressure, then we
obtain

2σ 2Dtα =
1

4

(
∂v

∂x
− ∂u

∂y

)

p +

1

2

∂

∂x

(
∂p

∂x

∂u

∂y
− ∂p

∂y

∂u

∂x

)
+

1

2

∂

∂y

(
∂p

∂x

∂v

∂y
− ∂p

∂y

∂v

∂x

)
.

(A 4)

This last equation is equivalent to (2.18), (2.19), (2.20) in the text.

Appendix B. Vortex-thinning and negative eddy-viscosity
Kraichnan proposed a physical mechanism to explain the origin of negative eddy

viscosities in two dimensions (see Kraichnan 1976, § 5.) For this purpose, he employed
a simplified model of small-scale vortex wave-packets in a uniform large-scale straining
field. His aim was to understand the asymptotic effect of the small scales on much
larger scales, and not to give an account of the inverse energy cascade by scale-local
interactions. Nevertheless, his ideas turn out to have much in common with our theory
of the local cascade interactions. The model proposed by us in § 2.1.3 to explain
the stress proportional to skew-strain is just a slight modification of Kraichnan’s.
Furthermore, his mechanism of ‘negative viscosity’ is essentially identical with that
found in the last term of our model stress, equation (2.34), which corresponds to a
tensile stress along vorticity-contour lines. Here we shall review the calculation of
Kraichnan (1976), in order to make more clear its relation to the present theory.

Kraichnan’s model of the small scales was a Gaussian wave-packet of vorticity –
called a ‘blob’ – or an ‘assembly of uncorrelated blobs’ (Kraichnan 1976). The
streamfunction of each blob was taken to have the form

ψ(x) = k−2f (x) cos(kx2),

f (x) = exp
(
− 1

2

(
x2

1 + x2
2

)/
D2

)
,

}
(B 1)
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where f is a Gaussian envelope function with a standard deviation ∼D that is
modulated by an oscillating cosine with wavevector k pointing in the vertical e2-
direction. A basic assumption is that kD � 1, so that the wavenumber of the
packet can be regarded as nearly sharp. Calculating the small-scale velocity field from

u = −∇̃ψ, it is not hard to show that the leading component of the velocity is

u1 ∼ k−1f (x) sin(kx2), (B 2)

and of the vorticity-gradient is

(∇ω)2 ∼ −kf (x) sin(kx2), (B 3)

asymptotically for kD � 1 (cf. (5.4) in Kraichnan 1976). Thus, the dominant compo-
nent of the total stress T =

∫
τ =

∫
uu is

T11 = k−2

∫
dx1

∫
dx2 exp

(
−

(
x2

1 + x2
2

)/
D2

)
sin2(kx2) ∼ πD2/2k2 (B 4)

for kD � 1. That is, the dominant stress is positive, or tensile, and exerted along the
horizontal direction e1. This is perpendicular to the direction of the vorticity gradient
e2, or along the direction of the vorticity contours. Thus, Kraichnan’s ‘blob model’
leads to a result in agreement with our general conclusion.

As a model of the large scales, Kraichnan took a uniform strain field,

S = a

(
cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)

)
, (B 5)

with eigenvalues ±a and eigenframe oriented at an angle φ with respect to the fixed
coordinate frame. The streamfunction corresponding to this large-scale field is just

V (x) = x�S̃x/2. Actually, Kraichnan kept the strain fixed with frame axes along
the coordinate directions and instead rotated the wavenumber of the small-scale
blob, as k = k(e1 sin φ + e2 cos φ), ((5.14) in Kraichnan 1976). This is physically more
natural, if we think of the small scales as isotropic and the large scales as having
fixed anisotropy. However, it is mathematically equivalent to rotate the strain, and it
relates more easily to our analysis in the text.

Kraichnan (1976) worked out in detail the energy balance for his simple two-scale
model of the velocity field. The initial energy in the small-scales is

E = 1
2

∫
|u|2 ∼ (1/2)T11 ∼ πD2/4k2. (B 6)

The effect of the straining field on the small-scale wavevector is to change its
magnitude by

dk2/dt = −2k�Sk = 2a cos(2φ)k2. (B 7)

Thus, Kraichnan concluded that, to leading order,

(dE/dt)t=0 = −πaD2 cos(2φ)/2k2. (B 8)

Cf. (5.8) in Kraichnan (1976) for the case where k = 1 and φ = 0. This reduction
in energy of the small-scale blob is a consequence of the transfer of its enstrophy to
higher wavenumber.

Kraichnan showed further that the energy budget was maintained by a deposit into
the ‘interaction energy’

∫
v · u between the large-scale and small-scale velocity fields.

In his calculation, he rewrote the interaction energy as
∫

V ω, in terms of the large-
scale streamfunction V and small-scale vorticity ω, and considered the nonlinear
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self-interaction of the latter. He found that the small-scale vorticity field set up a
secondary flow of four equal-strength vortices with alternating signs of circulation
which, for φ = 0, reinforced the large-scale strain. In his own words:

If a small-scale motion has the form of a compact blob of vorticity, or an assembly of
uncorrelated blobs, a steady straining will eventually draw a typical blob out into an
elongated shape, with corresponding thinning and increase of typical wavenumber.
The typical result will be a decrease of the kinetic energy of the small-scale motion
and a corresponding reinforcement of the straining field.

In this way, the energy loss from the small scales that is observed in (B 8) can be
traced to a transfer of equal size into the interaction energy between large scales and
small scales.

This transfer can be shown to be equivalent to the scale-to-scale energy flux that
we defined in (1.1). Indeed, using the fact that the large-scale velocity v is stationary
and its velocity gradient ∇v is uniform, we find that

(dE/dt)t=0 = − d

dt

∫
v · u =

∫
v · [∇ · (uu)] = −

∫
(∇v) : uu = −S : T. (B 9)

This is the area-integral of the quantity that appears in (1.1). We can use this expression
to verify easily the energy balance result from Kraichnan (1976). Substituting the stress
from (B 4) and the strain from (B 5), we obtain (dE/dt)t=0 = −πaD2 cos(2φ)/2k2, in
agreement with (B 8). Note that the flux is negative and the small scales lose energy
only if |φ| < π/4, whereas the flux is positive for π/4 < |φ| < π/2. If we assume that
the angle φ is random with an isotropic distribution and k = ke2 is fixed, then the
average flux is 〈(dE/dt)t=0〉ang = 0. Kraichnan (1976) had already noted this result
and established its consistency with the mean growth of small-scale wavenumber
magnitude or, equivalently, the mean stretching of small-scale vorticity gradients.
As we discussed around our equation (2.50), a mean energy flux under isotropic
conditions requires statistical correlations between disparate scales. In Kraichnan’s
case where he assumed a very wide separation between the two scales of motion, it
was realistic to assume negligible correlations and thus zero net transfer. However,
this is an unrealistic assumption in the context of a local energy cascade, where
the stress and strain in (1.1) obtain most of their contributions from adjacent scales
(Eyink 2005) and are highly correlated.

The mechanism that Kraichnan identified as acting between distant scales can also
be identified with several of the mechanisms that we have found in our analysis of
local cascade interactions. Note that in Kraichnan’s vortex-blob model

(∇ω)�S(∇ω) = −ak2f 2(x) sin2(kx2) cos(2φ), (B 10)

using (B 3) and (B 5). Integrated over space, this yields∫
(∇ω)�S(∇ω) = −πa(Dk)2 cos(2φ)/2, (B 11)

to leading order for Dk � 1. Thus, we have agreement of (B 8) with the fourth
term in our formula Π

(n,2)
∗ for the energy flux, equation (2.49), by taking �k = 1/k

there. The second term in (2.49) corresponding to differential strain rotation is zero
in the vortex-blob model because the orientations of the strain fields (both large-scale
and small-scale) are uniform in space. However, we can equally well understand the
energy flux in the blob model based upon the first term in (2.49) (the same as (2.14))
that corresponds to relative rotation of strain at disparate scales. Indeed, in the blob
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model, the vorticity is

ω(x) ∼ −f (x) cos(kx2) (B 12)

and the small-scale strain of the blob is

S′(x) = 1
2
ω(x)

(
0 −1

−1 0

)
(B 13)

to leading order. Thus, it is not hard to calculate that

ωS : S̃
′
= −af 2(x) cos2(kx2) cos(2φ), (B 14)

and integrated over space this gives also∫
ωS : S̃

′
= −πaD2 cos(2φ)/2 (B 15)

to leading order for Dk � 1. Multiplying (B 15) by �2
k = 1/k2, we also find agreement

of (B 8) with (2.14). Before averaging over space, the two contributions from (B 10)
and (B 14) are exactly out of phase. It is another simple exercise to verify that the
third term in (2.49), from differential strain magnification, is also non-zero in the blob
model and gives a contribution of the same sort.

Thus, it is clear that most of the terms in our CSA-MSG formula, (2.49), are
represented in Kraichnan’s blob model, in particular, the flux from skew-strain, from
differential strain magnification, and from vorticity-gradient stretching. All of these
can be produced by a single mechanism of ‘vortex thinning’. Our somewhat simpler
model of vortex patches in § 2.1.3 also illustrates these same flux terms, except in the
case of constant-vorticity patches, for which only the flux from skew-strain survives.
The increase in wavenumber that was considered by Kraichnan in his blob model and
the asymptotics Dk � 1 play no essential role in the skew-strain mechanism. Indeed,
note that (B 12)–(B 15) for the blob model all have non-vanishing values at k = 0,

whereas (B 10)–(B 11) tend to zero as k → 0.

Appendix C. Two-dimensional Betchov relation
For any incompressible or solenoidal field u in two dimensions, we can define a

corresponding ‘strain’ S
(u)
ij and ‘vorticity’ ω(u) via

∂ui

∂xj

= ui,j = S
(u)
ij − 1

2
εijω

(u). (C 1)

Observe our notation for partial derivative with respect to xj , indicated by subscript
j preceded by a comma. Likewise, we write ∂2ui/∂xj∂xk = ui,jk, etc. Using these
notations and definitions, the first step in the derivation of the two-dimensional
Betchov relation is the following identity:

∂l

[
S

(u)
ij vi,kwj,kl

]
− ∂k

[
S

(u)
ij vi,kwj,ll

]
= S

(u)
ij vi,klwj,kl︸ ︷︷ ︸ − S

(u)
ij vi,kkwj,ll︸ ︷︷ ︸

�1 �2

+ S
(u)
ij,lvi,kwj,kl︸ ︷︷ ︸ − S

(u)
ij,kvi,kwj,ll︸ ︷︷ ︸ . (C 2)

�3 �4

Here u, v, w are all incompressible fields. The identity (C 3) follows straightforwardly
from the product of the rule of differentiation.
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The terms labelled �1 , �2 , and �3 are easily calculated by the substitutions vi,j =

S
(v)
ij −εijω

(v)/2, vi,jk = S
(v)
ij,k −εij ∂kω

(v)/2, and vi,kk = −εil∂lω
(v), and similar substitutions

for the field w. The term �1 becomes

S
(u)
ij vi,klwj,kl = 1

2
S

(u)
ij

(
S̃

(v)
ij,l∂lω

(w) + S̃
(w)
ij,l ∂lω

(v)
)
, (C 3)

�2 becomes

−S
(u)
ij vi,kkwj,ll = S

(u)
ij ∂iω

(v)∂jω
(w), (C 4)

and �3 becomes

S
(u)
ij,lvi,kwj,kl = − 1

2
S

(v)
ik S̃

(u)
ik,l∂lω

(w) + 1
2
S

(u)
ij,l S̃

(w)
ij,l ω

(v). (C 5)

Term �4 requires as an additional step the use of the identity

S
(u)
ij,k − 1

2
εij ∂kω

(u) = ui,jk = ui,kj = S
(u)
ik,j − 1

2
εik∂jω

(u) (C 6)

to replace S
(u)
ij,k by S

(u)
ik,j . Then using the same substitutions as for the other three terms,

�4 becomes

−S
(u)
ij,kvi,kwj,ll = S̃

(u)
ik,j S

(v)
ik ∂jω

(w) + 1
2
S

(v)
jk ∂kω

(u)∂jω
(w) + 1

4
εkj ∂kω

(u)∂jω
(w)ω(v). (C 7)

We are now able to sum the contributions from all four terms, �1 �2 �3 and �4 . In
order to simplify the result, it is helpful to define the quantity

T
(u,v)
ij = ∂iω

(u)∂jω
(v) + S̃

(u)
ij,k∂kω

(v). (C 8)

Then the sum of the four terms yields, after some elementary algebra,

S
(v)
ij T

(u,w)
ij + S

(u)
ij T

(v,w)
ij + S

(u)
ij T

(w,v)
ij = εij

[
S

(u)
ik,lS

(w)
jk,l − ∂iω

(u)∂jω
(w)

]
ω(v)

− 2∂k

[
S

(u)
ij vi,kwj,ll

]
+ 2∂l

[
S

(u)
ij vi,kwj,kl

]
. (C 9)

Observe that the first term on the right-hand side of (C 9) is antisymmetric under the
interchange u ↔ w. Thus, if we symmetrize (C 9) in u and w, we obtain

S
(u)
ij T

(v,w)
ij + perm. = div [· · ·], (C 10)

where the sum on the left-hand side is over all six permutations of u, v, w and div [· · ·]
on the right-hand side indicates a total divergence. It therefore follows that〈

S
(u)
ij T

(v,w)
ij

〉
+ perm. = 0, (C 11)

where 〈· · ·〉 denotes either an average over a homogeneous ensemble or a space
average with boundary conditions that permit integrations by parts (e.g. periodic).
We call the relation (C 11) the generalized Betchov identity in two dimensions. Setting
u = v = w gives 〈

S
(u)
ij T

(u,u)
ij

〉
= 0, (C 12)

where S
(u)
ij and T

(u,u)
ij are now constructed from the field u alone. Equation (C 12) is

equivalent to the two-dimensional Betchov relation (2.41) or (2.42) stated in the text.
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